
Week 15 - Wednesday

 What did we talk about last time?
 Review up to Exam 1

 Base case
 Tells recursion when to stop
 Can have multiple base cases
 Have to have at least one or the recursion will never end

 Recursive case
 Tells recursion how to proceed one more step
 Necessary to make recursion able to progress
 Multiple recursive cases are possible

 Factorial:

int factorial(int n)
{
if(n == 1)
return 1;

else
return n * factorial(n – 1);

}

 Given an N x N chess board, where N ≥
4 it is possible to place N queens on
the board so that none of them are
able to attack each other in a given
move

 Write a method that, given a value of
N, will return the total number of
ways that the N queens can be placed

 A symbol table goes by many names:
 Map
 Lookup table
 Dictionary

 The idea is a table that has a two columns, a key and a value
 You can store, lookup, and change the value based on the key

 We can define a symbol table ADT with a few essential operations:
 put(Key key, Value value)

▪ Put the key-value pair into the table
 get(Key key):

▪ Retrieve the value associated with key
 delete(Key key)

▪ Remove the value associated with key
 contains(Key key)

▪ See if the table contains a key
 isEmpty()
 size()

 It's also useful to be able to iterate over all keys

 A tree is a data structure built out of nodes with children
 A general tree node can have any non-negative number of

children
 Every child has exactly one parent node
 There are no loops in a tree
 A tree expressions a hierarchy or a similar relationship

 The root is the top of the tree, the node which has no parents
 A leaf of a tree is a node that has no children
 An inner node is a node that does have children
 An edge or a link connects a node to its children
 The depth of a node is the length of the path from a node to

its root
 The height of the tree is the greatest depth of any node
 A subtree is a node in a tree and all of its children
 Level: the set of all nodes at a given depth from the root

1

2 3 4

5 6 7

Root

Inner
Nodes

Leaves

 A binary tree is a tree such that each node has two or fewer
children

 The two children of a node are generally called the left child
and the right child, respectively

1

2 3

4 5 6

 Full binary tree: every node other than the leaves has two
children

 Perfect binary tree: a full binary tree where all leaves are at
the same depth

 Complete binary tree: every level, except possibly the last, is
completely filled, with all nodes to the left

 Balanced binary tree: the depths of all the leaves differ by at
most 1

 A binary search tree is binary tree with three properties:
1. The left subtree of the root only contains nodes with keys less than

the root’s key
2. The right subtree of the root only contains nodes with keys greater

than the root’s key
3. Both the left and the right subtrees are also binary search trees

 Keeping data organized
 Easy to produce a sorted order in O(n) time

 Find, add, and delete are all O(log n) time

public class Tree {
private static class Node {
public int key;
public String value;
public Node left;
public Node right;

}

private Node root = null;

…
}

29 14 9 . . 19 . 26 . . 34 31 . . .

29

14 34

9 19 31

26

. . 9 . . . 26 19 14 . . 31 . 34 29

29

14 34

9 19 31

26

. 9 . 14 . 19 . 26 . 29 . 31 . 34 .

29

14 34

9 19 31

26

29 14 34 9 19 31 26

29

14 34

9 19 31

26

 For depth first traversals, we used a stack
 What are we going to use for a BFS?
 A queue!

 Algorithm:
1. Put the root of the tree in the queue
2. As long as the queue is not empty:

a) Dequeue the first element and process it
b) Enqueue all of its children

 We can have a balanced tree by:
 Doing red-black (or AVL) inserts
 Balancing a tree by construction (sort, then add)
 DSW algorithm: completely unbalance then rebalance

 A 2-3 search tree is a data structure that maintains balance
 It is actually a ternary tree, not a binary tree
 A 2-3 tree is one of the following three things:
 An empty tree (null)
 A 2-node (like a BST node) with a single key, smaller data on its left

and larger values on its right
 A 3-node with two keys and three links, all key values smaller than

the first key on the left, between the two keys in the middle, and
larger than the second key on the right

 The key thing that keeps a 2-3 search tree balanced is that all
leaves are on the same level

 Only leaves have null links
 Thus, the maximum depth is somewhere between the log3n

(the best case, where all nodes are 3-nodes) and log2n (the
worst case, where all nodes are 2-nodes)

 We build from the bottom up
 Except for an empty tree, we never put a new node in a null

link
 Instead, you can add a new key to a 2-node, turning it into a 3-

node
 Adding a new key to a 3-node forces it to break into two 2-

nodes

 We can do an insertion with a red-black tree using a series of rotations
and recolors

 We do a regular BST insert
 Then, we work back up the tree as the recursion unwinds
 If the right child is red and the left is black, we rotate the current node left
 If the left child is red and the left child of the left child is red, we rotate the

current node right
 If both children are red, we recolor them black and the current node red

 You have to do all these checks, in order!
 Multiple rotations can happen

 It doesn't make sense to have a red root, so we always color the root black
after the insert

We perform a left rotation
when the right child is red

Y

X

B

A

C

Current

Y

X

BA

C

Current

We perform a right rotation when the
left child is red and its left child is red

Z

Y

BA

D

Current

X C

Z

Y

BA D

Current

X

C

We recolor both children and the current
node when both children are red

Y

X

BA D

Current

Z

C

Y

X

BA D

Current

Z

C

 Learn how to do 2-3 tree insertions really well
 Then, learn how you can map a 2-3 tree onto a red-back tree
 It's much easier to make a 2-3 tree and then figure out the

corresponding red-black tree than it is to build a red-black
tree from scratch

 We make a huge array, so big that we’ll have more spaces in
the array than we expect data values

 We use a hashing function that maps items to indexes in the
array

 Using the hashing function, we know where to put each item
but also where to look for a particular item

 We are using a hash table for a space/time tradeoff
 Lots of space means we can get down to O(1)
 How much space do we need?
 When the table gets too full, we may need to rehash everything

 How do we pick a good hashing function?
 What happens if two values collide (map to the same location)

 With open addressing, we look for some empty spot in the
hash table to put the item

 There are a few common strategies
 Linear probing
 Quadratic probing
 Double hashing

 Alternatively, we can use chaining

 Edges
 Nodes
 Types
 Undirected
 Directed
 Multigraphs
 Weighted
 Colored
 Triangle inequality

 Depth First Search
 Cycle detection
 Connectivity

 Breadth First Search

 Start with two sets, S and V:
 S has the starting node in it
 V has everything else

1. Set the distance to all nodes in V to ∞
2. Find the node u in V with the smallest d(u)
3. For every neighbor v of u in V

a) If d(v) > d(u) + d(u,v)
b) Set d(v) = d(u) + d(u,v)

4. Move u from V to S
5. If V is not empty, go back to Step 2

 Start with two sets, S and V:
 S has the starting node in it
 V has everything else

1. Find the node u in V that is closest to any node in S
2. Put the edge to u into the MST
3. Move u from V to S
4. If V is not empty, go back to Step 1

 Review everything after Exam 2
 More graph stuff
 Eulerian tours and paths
 NP-completeness
 Matching

 B-trees
 Network flow
 Sorting
 Heaps
 Tries
 Review Chapters 2, 4, 5, and 6

 Bring a question to class Friday!
 Any question about any material in the course

 Fill out course evaluations!
 Finish Project 4
 Due Friday

 Study for final exam
 Friday, 12/13/2024 from 10:15 a.m. - 12:15 p.m.

	COMP 2100
	Last time
	Questions?
	Project 4
	Student Questions
	Recursion
	Recursion
	Recursive function example
	Recursion Problem
	N-Queens
	Symbol tables
	Symbol table ADT
	Trees
	Trees
	Terminology
	A tree
	Binary tree
	Binary tree
	Binary tree terminology
	Binary search tree (BST)
	Purpose of a BST
	Basic BST class
	Preorder
	Postorder
	Inorder
	Level order
	Level order algorithm
	Balancing trees
	2-3 trees
	2-3 tree properties
	How does that work?
	Red-black Trees
	Building the tree
	Left rotation
	Right rotation
	Recolor
	Exam hints
	Hash Tables
	Hash tables: theory
	Hash table: issues
	Collisions
	Graphs
	Graphs
	Traversals
	Dijkstra’s Algorithm
	Minimum Spanning Tree (MST)
	Quiz
	Upcoming
	Next time…
	Reminders

